Singlet Majorana fermion dark matter: status and prospects

Yue-Lin Sming Tsai Kavli IPMU, The University of Tokyo

This work (arXiv:1407.1859) is in collaboration with Shigeki Matsumoto and Satyanarayan Mukhopadhyay JHEP(10)2014 155

Dark Matter evidence

1. Motivation

2. Dark Matter effective operators

3. Impact of the relic density

4. future prospect

Dark Matter effective operators

Could we have a particle model independent DM study?

Phenomenological WIMP DM models

	Scientific name	Popular name	Spin	SU(2) _L	U(1) _Y
1	Singlet scalar	The simplest DM	0	0	0
	Doublet scalar	Inert Higgs DM	0	1/z	1/2
	Triplet scalar	着15-50 · 一 指加	0	1	0
	Triplet scalar II		0	1	1
	····				
5	Singlet fermion	Bino/Singlino	1/2	0	0
	Doublet fermion	Higgsino	1/2	1/2	1/2
	Triplet fermion	Wino	1/2	1	0
	Triplet fermion II		1/2	1	1
20			and the		
	Singlet vector	Little Higgs DM	1	0	0
	Doublet vector	的历史。二书 即	1	1/2	1/2
	Triplet vector	R. S. S. S. R.	1	1	0
	Triplet vector II		1	1	1
21			12.23	Credit: Shigek	ki Matsumo

DM still leaves a lot unknown:

- Spin
- Electroweak charge
- Real/Majorana or Complex/Dirac

Credit: Qing-Hong Cao, Chuan-Ren Chen, Chong Sheng Li, Hao Zhang (0912.4511)

The effective Model to start with

The simplest settings:

- Majorana fermion
- Singlet
- Z2-symmetry
- WIMP
- dimension<7

EFT requirements: (Heavy mediator)

- lambda>2 mx -
- lambda>10 mx

The DM in this class:

- Bino neutralino
- Singlino neutralino
- Sterile neutrino

Minimal requirement of not producing mediator particle on shell in a process.

EFT calculation of annihilation rate accurate to O(8%) when compared to s-channel UV completions

SM particles. An EFT description in this case boils down to replacing by a constant mass scale the product of couplings of X to the DM-pair (g_X^{DM}) and to the SM-pair (g_X^{SM}) , and its propagator denominator:

$$\frac{g_X^{\rm DM} g_X^{\rm SM}}{s - m_X^2} \to \frac{-g_X^{\rm DM} g_X^{\rm SM}}{m_X^2} \left(1 + \frac{s}{m_X^2} + \mathcal{O}(\frac{s}{m_X^2})^2 \right).$$
(13)

In an weakly coupled underlying theory, $g_X^{\text{DM}} \sim g_X^{\text{SM}} \sim \mathcal{O}(1)$, and henceforth we shall assume this to be the case. Therefore, when matching the UV theory to the EFT, we obtain the relation $\Lambda = m_X$ for $g_X^{\text{DM}} \times g_X^{\text{SM}} = 1$. Now, consider the pair annihilation rate of χ in the early universe, which is relevant for determining its current abundance. In this case, if v is the relative velocity between the DM particles, then the centre of mass energy squared is given by

$$s = 4m_{\chi}^2 + m_{\chi}^2 v^2 + \mathcal{O}(v^4).$$
(14)

Therefore, the 2nd term in the propagator expansion in Eq. 13 now reads

$$\frac{-s}{m_X^4} \simeq \frac{-4m_\chi^2}{m_X^4} - \frac{m_\chi^2 v^2}{m_X^4}.$$
 (15)

DM effective operators

$\mathcal{L}_{D5} = \frac{g_s}{\Lambda} \bar{\chi} \chi H^{\dagger} H$ thermal freeze-out (early Univ.) indirect detection (now) $\frac{g_D}{\Lambda^2}(\bar{\chi}\gamma_\mu\gamma_5\chi)(H^\dagger iD^\mu H)$ $\mathcal{L}_{D6}^{Higgs} =$ $\mathcal{L}_{D6}^{Lepton} = \sum_{\Lambda^2} \frac{1}{\Lambda^2} (\bar{\chi} \gamma_{\mu} \gamma_5 \chi) (g_{LL} \bar{L}^i \gamma^{\mu} L^i + g_{RE} \bar{E}_R^i \gamma^{\mu} E_R^i)$ DM SM $\mathcal{L}_5^{\text{CPV}} = \frac{g_{PS}}{\Lambda} \overline{\chi} i \gamma_5 \chi H^{\dagger} H.$ production at colliders $\mathcal{L}_{\mathsf{D6}}^{\mathsf{Quark}} = \sum^{-} rac{1}{\Lambda^2} (ar{\chi} \gamma_\mu \gamma_5 \chi) (g_{LQ} ar{Q}^i \gamma^\mu Q^i + g_{Ru} ar{U}^i \gamma^\mu U^i + g_{Rd} ar{D}^i \gamma^\mu D^i)$

direct detection

Why all operators?

Red: Coll+DD+GD^{The} combined analysis for O_1 , O_2 , O_3 , O_4 , O_5 and O_6 . In each panel, the WMAP7 data requires the area below the blue curve (indicated by the blue arrow) while all the other data requires the area above the red curve (indicated by the red arrow). The allowed region is shaded

8 0 10³

0.

06

S 104

for O_2 .

1

 $O_{10} = \sum_{\star} \frac{C_{10}^f m_f}{\Lambda_{10}^3} \left(\bar{\chi} \gamma^5 \chi \right) \left(\bar{f} \gamma^5 f \right) \; .$

Family
universality
$$\begin{aligned}
\mathbf{L}_{D5} &= \frac{g_s}{\Lambda} \bar{\chi} \chi H^{\dagger} H \\
\mathcal{L}_{D6}^{Lepton} &= \sum_{i=1}^{3} \frac{1}{\Lambda^2} (\bar{\chi} \gamma_{\mu} \gamma_5 \chi) (g_{LL} \bar{L}^i \gamma^{\mu} L^i + g_{RE} \bar{E}_R^i \gamma^{\mu} E_R^i) \\
\mathcal{L}_{D6}^{CPV} &= \sum_{i=1}^{3} \frac{1}{\Lambda^2} (\bar{\chi} \gamma_{\mu} \gamma_5 \chi) (g_{LL} \bar{L}^i \gamma^{\mu} Q^i + g_{Ru} \bar{U}^i \gamma^{\mu} U^i + g_{Rd} \bar{D}^i \gamma^{\mu} D^i)
\end{aligned}$$

Constraints	PLANCK (relic)	LUX (SI)	X100 (SD)	gamma- ray	Mono- jet	Mono- photon	inv. Z	inv. H
constrained couplings	ALL	gS	Quark, gD	ALL	Quark, gD	Lepton, gD	gD	gS, gPS

We included all the opertaors together!

The global study of Singlet Majorana DM

Measurement	Central Value	Error (1σ)	Distribution	Ref.
Relic density	0.1199	0.0027	Gaussian	[19]
$BR(h \rightarrow invisible)$	0.0	$\frac{24\%}{1.64}$	Gaussian	[40]
$\Gamma(Z \to \text{invisible})(\mathrm{MeV})$	0.0	$\frac{2.0}{1.64}$	Gaussian	[24]
XENON100 σ_n^{SD} (2012)	Appendix A	Appendix A	Gaussian+Poisson	[21]
LUX $\sigma_p^{\rm SI}$ (2013)	Appendix A	Appendix A	Gaussian	[20]
Monojet (CMS, 8 TeV, 19.5 fb^{-1})	Appendix B	Appendix B	Gaussian+Poisson	[26]
Mono-photon (LEP, 650 pb^{-1})	Sec. 3.5.2	Sec. 3.5.2	Gaussian+Poisson	[25]
Fermi dSphs (5-yrs)	Ref. [37]	Ref. [37]	Gaussian+Poisson	[22]
IceCube-79	Sec. 3.4.2	Sec. 3.4.2	hard cut	[23]

Table 1: The experimental constraints employed in our analysis, along with their central values, 1σ experimental uncertainties, and functional form of the likelihood functions. The details of most of the constraints are provided in the relevant sections

10 GeV $\leq m_{\chi} \leq 5$ TeV $2m_{\chi} \leq \Lambda \leq 100$ TeV $-1 \leq g_i \leq 1.$

7 or 8 independent couplings

referred to above.	Constraints	PLANCK (relic)	LUX (SI)	X100 (SD)	gamma- ray	Mono- jet	Mono- photon	inv. Z	inv. H
	constrained couplings	ALL	gS	Quark, gD	ALL	Quark, gD	Lepton, gD	gD	gS, gPS

Impact of the relic density

Thermal and Nonthermal

Assumption: DM can be reproduced by late time decay relic density(thermal+nonthermal)=0.1

Relic density constraint

• We allow the relic density can be reproduced non-thermally, e.g., decay from moduli, gravitino, cosmic string...

- The EFT validating line limits the lowest relic density.
- Except psudo-scalar coupling, all other couplings are only efficient at mx less than 300 GeV.

Relic density constraint

CP conserving and violating

CP conserving and violating

Future prospect

Future powerful experiments

Future prospect

- Future LZ experiment can rule out most of parameter space in CPC scenario, even in Higgs resonance region.
- For the case Lambda>10*mx, only small lambda region near Lambda=10*mx (W+Wand ttbar) or Z-resonance survives.

CP-violating term can weaken the future constraint's power.

DM Direct Detection and monophoton cross section

Summary and Conclusion

- If mediator is heavy enough, lambda>10 mx, CPC/CPV DM has a limit on the mass, 20<mx/GeV<300/1000.
- In CPC case, even with non-thermal relic constraint, oh2<0.11, only h/Zresonance and some tiny region at the small lambda is allowed. However, CPV operator can release more parameter space.
- Future LZ can entirely rule out h-resonance but it requires stronger spin-dependant DD and invisible Z-width to test DM-Z coupling.
- As long as the mediator heavier than 2*mx, our limits can be applied to bino/siglino/sterile neutrino dark matter.
- The most robust limits of Majorana fermion DM are given.
- It is testable in the future experiments.

Detect Dark Matter elastic scattering

CDM in trouble

- 1. Core-vs-cusp problem
- Central densities of dwarf halos exhibit cores
- 2. Too-big-to-fail problem
- Simulations predict O(10) massive MW satellites
 more massive than observed MW dSphs
- 3. Missing satellite problem
- Fewer small MW dSphs than predicted by simulation
- Small enough to fail